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1 Introduction

Elliptic equations model the behaviour of scalar quantities u, such as temper-
ature or gravitational potential, which are in an equilibrium situation subject
to certain imposed boundary conditions. In his first four lectures, John Urbas
discussed linear 1 elliptic equations. In his lectures on the minimal surface
equation, Graham Williams discussed the minimal surface equation, a quasi-
linear 2 elliptic equation in divergence form. Neil Trudinger and Tim Cranny
will discuss fully nonlinear 3 elliptic equations.

Elliptic systems model vector-valued quantities in an equilibrium situa-
tion subject to certain imposed boundary conditions. Examples are a vector-
field describing the molecular orientation of a liquid crystal, and the displace-
ment of an elastic body under an external force.

Solutions of elliptic equations are typically as smooth as the data allows
(e.g. are C∞ if the given data is C∞). Solutions of elliptic systems typically
have singularities.

We use as reference [G] the book Multiple Integrals in the Calculus of
Variations by M. Giaquinta.

2 A Model, Harmonic Map, Problem

Suppose Ω ⊂ IRn is an elastic membrane, “stretched” via the function w over
a part of the n-dimensional sphere Sn ⊂ IRn+1, where w is specified on the
boundary ∂Ω. As a simple approximation to the physical situation, we can
regard w as a minimiser of the Dirichlet energy

1

2

∫
Ω
|Dw|2, 4 (1)

amongst all maps w :Ω→ IRn+1 such that

|w| = 1, w|∂Ω specified.

1The unknown function u and its first and second derivatives occur linearly. The
coefficients of u and its derivatives may be nonlinear, but usually smooth, functions of the
domain variables x1, . . . , xn.

2Linear in the second derivatives of u, but not necessarily linear in u or its first
derivatives.

3Not even linear in the second derivatives of u.
4Where |Dw|2 =

∑
i,α |Diw

α|2. The 1
2 is merely a convenient normalisation constant.
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A simpler related problem, without the constraint |w| = 1, is obtained as
follows. Let ψ : Sn → IRn be stereographic projection from the north pole.
If w[Ω] avoids a neighbourhood of the south pole then u = ψ ◦ w solves the
problem:
Minimise

E(u) =
1

2

∫
Ω
a(u)|Du|2,

amongst all maps u :Ω→ IRn such that

u|∂Ω specified.

Here a(u) is a smooth positive function (which is determined5 by ψ).

We will consider this simpler problem

Euler Lagrange System We now derive the Euler Lagrange system for
minimisers of E. Arguing formally, if u is a minimiser of E (subject to fixing
the boundary values of u), then for all φ ∈ C1

c (Ω; IRn) 6

0 =
d

dt

∣∣∣∣∣
t=0

1

2

∫
Ω
a(u+ tφ)|D(u+ tφ)|2

=
∫

Ω
a(u)Diu

αDiφ
α +

1

2
Dαa(u)φα|Du|2

=
∫

Ω
a(u)DuDφ+B(u)|Du|2φ.

5a(u) = |∇ψ|−2, where ∇ψ is the tangential gradient, defined in a natural manner.
6C1

c (Ω; IRn) consists of all compactly supported C1 functions φ :Ω→ IRn.



We sum over repeated indices in the second line, and in the last line we
repress the indices.

If u satisfies the above integral equation for all φ ∈ C1
c (Ω; IRn), we say

that u is a weak solution of the system

Di(a(u)Diu
α) =

1

2
Dαa(u)|Du|2 (2)

for α = 1, . . . , n.7 We abbreviate this to

D(a(u)Du) = B(u)|Du|2. (3)

If u is C1 then being weak solution is the same as satisfying (3) in the usual
sense.

Important features to note are the positivity of a(u), which makes the
system elliptic,8 and the quadratic nature of |Du|2 on the right.9

Solutions with Singularities In the theory of elliptic P.D.E’s, you con-
sidered the class of W 1,2(Ω) functions largely for technical reasons.10 It was
“simple” to show the existence of weak solutions in this class, and then one
considered the question of regularity of solutions. In the vector-valued set-
ting, solutions need not be smooth, and it becomes even more natural to
work in the W 1,2 setting.

Thus we define
W 1,2(Ω; IRN)

to be the class of functions u : Ω → IRN such that each component function
belongs to W 1,2(Ω).

Note that the energy E(u) is well defined for arbitrary functions u ∈
W 1,2(Ω; IRn). In particular, the function x/|x| has partial derivatives which
“behave like” 1/|x|, and so x/|x| ∈W 1,2(B1(0); IRn) if n ≥ 3. But note that
x/|x| has a singularity at the origin.

Let Ω = B1(0). The function

w(x) = (x/|x|, 0)

maps B1(0) “radially” onto the equator of Sn ⊂ IRn+1. The function x/|x|,
and hence w, is a W 1,2 function if n ≥ 3. One can show that if n ≥ 7 then w

7The fact that the number of “dependent” variables u1, . . . , un and the number of
“independent” variables x1, . . . , xn are the same is just a consequence of this particular
problem. It is not the case in general.

8More generally, if instead of a(u)Diu
αDiφ

α we had
∑

i=1,...,n
α=1,...,N

Aαβij Diu
αDjφ

β , then we

say the system is elliptic if Aαβij ξ
α
i ξ

β
j ≥ λ|ξ|2 for some constant λ > 0 and all ξ ∈ IRn+N .

In many physical problems it is important to have a weaker form of ellipticity, namely
Aαβij ξiη

αξjη
β ≥ λ|ξ|2 for some constant λ > 0 and all ξ ∈ IRn, η ∈ IRN .

9An exponent less than two is “easier” to handle; an exponent greater than two is more
difficult. But two is the “natural” exponent for many problems, as is the case here.

10See also my lectures on measure theory.



has least energy amongst all functions mapping B1(0) onto the unit sphere
and having the same boundary values as w. Similarly, if n ≥ 7, u = ψ ◦ w
minimises E(u) in (2) amongst all maps having the same boundary values.
In particular, u satisfies the system of equations (2), i.e. (3). If 3 ≤ n < 7
then u is no longer a minimiser, but it still satisfies the system (3). If n = 2
it turns out that solutions of (3) , and in particular minimisers of E(u), are
smooth.

We have just noted that a solution of (3) may have a singularity. If u(x) is
a solution, then clearly so is u(x−a) for any a ∈ IRn. Since a sum of solutions
is also solution, we obtain solutions with any finite number of singularities.

In general, a solution of (3) is said to be stationary , or an equilibrium solu-
tion, for the energy E. Thus minimisers are solutions of the Euler Lagrange
system, but not necessarily conversely.11 Since the energy is the Dirichlet En-
ergy (for w, and also for u if we choose the appropriate metric), stationary
functions for this particular problem are called harmonic.

3 A Simpler Model Problem

Our intention is to provide a reasonably complete analysis for solutions of
systems of the form (3), but with zero right side. Thus we consider systems
of the form

D(a(u)Du) = 0, (4)

which may or may not be an Euler Lagrange system.

Systems of the type (4) were the first type of nonlinear elliptic system
to be analysed. (In the next Section we briefly remark on linear elliptic sys-
tems.) If the right side is nonzero, as in (3), then the problem is considerably
more complicated. In particular, minimisers will have “nicer” properties than
merely stationary solutions. See [G] for more details.

We remark (4) may also have singular solutions. For example, x/|x| is a
weak solution of (4) if

Aαβij (u) = δijδαβ +

(
δβj +

4

n− 2

ujuβ

1 + |u|2

)(
δαi +

4

n− 2

uiuα

1 + |u|2

)
,

where n = N ≥ 3. See [G, p. 57]. Note that the A are C∞, in fact analytic.
The system of equations in this case is an Euler Lagrange system for a certain
energy functional. Moreover, for sufficiently large n, x/|x| is the (unique)
minimiser of this particular energy functional.

11The analogy is that a function E defined on IRk can have equilibrium points which
are not minimisers.



4 Linear Elliptic Systems

For completeness, we briefly discuss linear elliptic systems. Suppose Ω ⊂ IRn

and
u :Ω→ IRN .

We say u satisfies a linear elliptic system in integral form if∫
Ω

∑
i=1,...,n

α=1,...,N

Aαβij (x)Diu
αDjφ

β = 0 (5)

for all φ ∈ C1
c (Ω; IRN). The Aαβij (x) are required to satisfy the ellipticity

condition
Aαβij (x)ξαi ξ

β
j ≥ λ|ξ|2

for some constant λ > 0 and all ξ ∈ IRnN . Note that the coefficients Aαβij (x)
depend only on x and not on u. The summation sign is usually dropped, and
we even suppress all indices and write∫

Ω
A(x)DuDφ = 0. (6)

The ellipticity condition is then written

Aξξ ≥ λ|ξ|2.

Assuming the Aαβij (x) are bounded, it is straightforward to show by an

approximation argument that we may take φ ∈ W 1,2
0 (Ω; IRN) in (5). Recall

that W 1,2
0 (Ω; IRN) consists of those W 1,2(Ω; IRN) functions which are zero on

∂Ω in a natural way.

Motivated by integration by parts, we usually write the system as

Dj

(
Aαβij (x)Diu

α
)

= 0 (7)

for β = 1, . . . , N . This abbreviates to

D(A(x)Du) = 0. (8)

If u ∈ W 1,2(Ω; IRN) satisfies (5) (i.e. (6)) we say u is a weak solution of the
system (7) (i.e. (8)). If A(x) and u are C1, then it follows from integration
by parts that a weak solution is a solution in the classical pointwise sense.

The theory of linear elliptic systems is similar to the theory of linear equa-
tions. In particular, one obtains an analogous Schauder theory (for Ck,α

solutions) and Sobolev theory (for W k,2 solutions).12 The main difference is
that if the functions Aαβij (x) are merely bounded, then there exist solutions
with singularities. This is not the case for a single equation. See [G, p. 54]

12Although the details can be considerably more complicated, at least when one consid-
ers other than second-order elliptic systems.



5 Regularity Results, Summary

We now consider the question of partial regularity (i.e. smoothness) of solu-
tions of (4).

More precisely, suppose u ∈W 1,2(Ω; IRN) and

D(A(u)Du) = 0, (9)

where

1. |A(z)| ≤M . . .∀z ∈ IRN ,

2. Aξξ ≥ λ|ξ|2 . . .∀ξ ∈ IRnN , where λ > 0,

3. A ∈ C0(IRN) is uniformly continuous.

More precisely, we are using an abbreviated notation as in the previous sec-
tion. By u satisfying the system (9) we mean that the corresponding integral
equations (as in (5) or (6) but with Aαβij (u) instead of Aαβij (x)), are satisfied

for all test functions φ ∈W 1,2
0 (Ω; IRN)

We will see that u ∈ Cα
0 (Ω0) for some open Ω0 ⊂ Ω, where Ω \ Ω0 is a

set of dimension ≤ n− 2 (in a sense to be explained later). If A is smoother
than C0, then u is correspondingly smoother in Ω0. In particular, if A is C∞

then u ∈ C∞0 (Ω0).

More can be proved. It is only necessary that A be continuous, not
uniformly continuous. Moreover, Ω \ Ω0 is in fact a set of dimension p for
some p < n− 2, and is empty if n = 2.

The idea of the proof is that if the graph of a solution u is sufficiently “flat”
in the L2 sense near x0 ∈ Ω, then in fact u is smooth in a neighbourhood of
x0. We will see that the “flatness” condition holds at all except a “small”
set of points.

The key technical point in the proof is to consider the quantity

U(x0, R) = −
∫
BR(x0)

|u− (u)x0,R|2,

for BR(x0) ⊂ Ω. This measures the L2 mean oscillation of u in BR(x0). Here
−∫ denotes the average, and is obtained by dividing by the volume ωnR

n of
BR(x0). The quantity (u)x0,R is the average of u in BR(x0) and is given by

(u)x0,R = −
∫
BR(x0)

u.

We will see that if U(x0, R) is sufficiently small then in fact U(x0, r) ap-
proaches zero like a power of r. From this, one deduces the Hölder continuity
of u in a neighbourhood of x0. One also shows that except for a set of x0 of
dimension n− 2, U(x0, R) is indeed small for some R = R(x0).



6 Some Important Preliminaries

We discuss a number of fundamental results that are used in the proof of
partial regularity.

6.1 Integral Characterisation of Hölder Continuity

Theorem If Ω has Lipschitz boundary, then

u ∈ C0,α(Ω)13 ⇐⇒
∫
BR(x0)

|u− (u)x0,R|2 ≤ cRn+2α

for all BR(x0) ⊂ Ω, and some constant c.

Remark More precisely, if the integral condition holds, then the precise
representative u∗ of u, defined by

u∗(x0) = lim
R→0
−
∫
BR(x0)

u,

satisfies u∗ ∈ C0,α(Ω). Since u∗ = u a.e., and changing u on a set of measure
zero does not change the integral, this is the best one can expect.

Proof: If u is Hölder continuous, the integral inequality is straightforward.
For the other direction, one works from the definition of u∗, see [G; Ch. III,1].

6.2 Energy (or Caccioppoli) Inequality

Theorem If u is a solution of (9) and BR(x0) ⊂ Ω, then∫
BR/2(x0)

|Du|2 ≤ c

R2

∫
BR(x0)

|u|2.

Philosophy The important point here is that we are bounding the L2 norm
of the derivative of u in some ball in terms of the L2 norm of u in a larger
ball. Such an estimate is not true for arbitrary functions u, but it is typical
of solutions of elliptic equations or systems that we can often bound integrals
of higher derivatives in terms of integrals of lower derivatives, usually over a
slightly larger set.

13Suppose 0 < α ≤ 1. Then

u ∈ C0,α(Ω)⇐⇒ |u(x)− u(y)| ≤M |x− y|α

for some M > 0 and all x, y ∈ Ω. Note that if α > 1 then the derivative of u would be
everywhere zero, and so u is constant!



Conversely, bounding integrals of lower derivatives in terms of integrals of
higher derivatives is something we can do for arbitrary functions, by means of
Sobolev or Poincaré inequalities. In particular, note the Poincaré inequality∫

BR(x0)
|u− (u)x0,R|2 ≤ cR2

∫
BR(x0)

|Du|2.

Proof: Since the proof is one of the simplest examples of a test function
argument, we sketch it here.

As is usual in P.D.E.’s, in the following, c denotes a constant which
may change from line to line. But it will only depend on the dimension and
constants such as M and λ which appear at the beginning of Section 5.

Let φ = η2u, where η is smooth, η ≥ 0, η = 1 on BR/2(x0), η = 0 outside
BR(x0), and |Dη| ≤ 3/R. Substituting this in the integral form of (9),

0 =
∫
ADuDφ

=
∫
ADu (η2Du+ 2ηuDη)

Hence ∫
η2ADuDu = −

∫
2AηDη uDu.

Hence

λ
∫
η2|Du|2 ≤ c

∫
η|Dη| |u| |Du|

≤ ε
∫
η2|Du|2 + c(ε)

∫
|Dη|2|u|2,

by Young’s inequality14. Taking ε = λ/2,∫
BR/2(x0)

|Du|2 ≤ c

R2

∫
BR(x0)

|u|2,

as required.

6.3 A Decay estimate for Solutions of Constant Co-
efficient Systems

Theorem Suppose u satisfies (9) where the A are constant and Ω = B1(0)
for simplicity of notation. Then for 0 < r ≤ 1,

U(0, r) ≤ cr2U(0, 1)

for some constant c.

14See the last Section of my measure theory notes.



Proof: We may assume r ≤ 1/4, since if r > 1/4 we can take c ≥ 4n+2.

Then

r−2U(0, r) = ω−1
n r−2−n

∫
Br(0)
|u− (u)r|2

≤ cr−n
∫
Br(0)
|Du|2 Poincaré’s inequality

≤ c sup
Br(0)

|Du|2

≤ c
∫
B1/2(0)

|Du|2 a standard elliptic estimate

≤ c
∫
B1(0)
|u− (u)1|2 by Caccioppoli’s inequality

The “standard elliptic estimate” above is that one can typically bound higher
norms (here L∞) of solutions and their derivatives in terms of lower norms
(here L2) over a larger domain. “Caccioppoli’s inequality” is applied to the
solution u− (u)1.

This gives the result.

7 Outline of Proof of Partial Regularity

Lemma Suppose u is a solution of (9). Then there exist constants ε > 0
and τ ∈ (0, 1) such that

U(x0, r) < ε

implies

U(x0, τr) <
1

2
U(x0, r).

Proof: Suppose τ ∈ (0, 1) and the conclusion of the lemma is false for each
ε > 0 (the intention is to obtain a contradiction if τ is sufficiently small).

Then there exist balls Brk(xk) ⊂ Ω such that

U(xk, rk) = λk
2 → 0 (10)

but

U(xk, τrk) ≥
1

2
λk

2. (11)

Rescale to the unit ball by setting

vk(z) =
u(xk + rkz)− ak

λk

for z ∈ B1(0), where ak = (u)xk,rk .



Then, using the integral form of (9),∫
A(λkvk + ak)DvkDφ = 0

for all φ ∈W 1,2
0 (B1(0); IRN).

Moreover, from (10) and (11),

(vk)1 = 0

−
∫
B1

|vk|2 = 1

−
∫
Bτ
|vk − (vk)τ |2 ≥ 1/2.

From Caccioppoli’s inequality,
∫
B1
|Dvk|2 is bounded independently of k.

This allows one to pass to a subsequence of the vk which converges weakly
in W 1,2, strongly in L2 and pointwise a.e., to some function v. Moreover,
ak → a, say. From this it is not difficult to show that v will satisfy the
“limit” equation ∫

A(a)DvDφ = 0

for all φ ∈W 1,2
0 (B1(0); IRN).

From the decay estimate for constant coefficient equations,∫
Bτ
|v − (v)τ |2 < cτ 2

∫
B1

|v − (v)1|2 = cτ 2.

On the other hand, ∫
Bτ
|v − (v)τ |2 ≥

1

2
,

using continuity of the L2 norm under L2 convergence in both lines.

This is a contradiction for sufficiently small τ .

The Lemma is now used as follows. The inequality U(x0, r) < ε must
hold in an open subset of Ω. Moreover, it can be iterated to show

U(x0, τ
jr) <

(
1

2

)j
U(x0, r).

This, together with the integral characterisation of Hölder continuity and
elementary arguments, shows u ∈ C0,α(Ω0) for some α. Higher smoothness
follows by fairly standard iteration techniques (although C0,α to C1,α is not
quite so standard).

The estimate on the dimension of Ω \ Ω0 follows from noting

U(x0, r) ≤ cr2−n
∫
Br(x0)

|Du|2

by Poincaré’s inequality, and the fact (using a Vitali covering argument) that
the right side approaches zero except on a set E with Hn−2(E) = 0.


