ELLIPTIC SYSTEMS

JOHN E. HUTCHINSON DEPARTMENT OF MATHEMATICS SCHOOL OF MATHEMATICAL SCIENCES, A.N.U.

1 Introduction

Elliptic equations model the behaviour of *scalar* quantities u, such as temperature or gravitational potential, which are in an equilibrium situation subject to certain imposed boundary conditions. In his first four lectures, John Urbas discussed *linear*¹ elliptic equations. In his lectures on the minimal surface equation, Graham Williams discussed the minimal surface equation, a *quasilinear*² elliptic equation in divergence form. Neil Trudinger and Tim Cranny will discuss *fully nonlinear*³ elliptic equations.

Elliptic systems model *vector-valued* quantities in an equilibrium situation subject to certain imposed boundary conditions. Examples are a vectorfield describing the molecular orientation of a liquid crystal, and the displacement of an elastic body under an external force.

Solutions of elliptic equations are typically as smooth as the data allows (e.g. are C^{∞} if the given data is C^{∞}). Solutions of elliptic systems typically have singularities.

We use as reference [G] the book *Multiple Integrals in the Calculus of Variations* by M. Giaquinta.

2 A Model, Harmonic Map, Problem

Suppose $\Omega \subset \mathbb{R}^n$ is an elastic membrane, "stretched" via the function w over a part of the *n*-dimensional sphere $S^n \subset \mathbb{R}^{n+1}$, where w is specified on the boundary $\partial \Omega$. As a simple approximation to the physical situation, we can regard w as a minimiser of the *Dirichlet energy*

$$\frac{1}{2} \int_{\Omega} |Dw|^2,^4 \tag{1}$$

amongst all maps $w: \Omega \to I\!\!R^{n+1}$ such that

|w| = 1, $w|_{\partial\Omega}$ specified.

¹The unknown function u and its first and second derivatives occur linearly. The *coefficients* of u and its derivatives may be nonlinear, but usually smooth, functions of the domain variables x_1, \ldots, x_n .

²Linear in the second derivatives of u, but not necessarily linear in u or its first derivatives.

³Not even linear in the second derivatives of u.

⁴Where $|Dw|^2 = \sum_{i,\alpha} |D_i w^{\alpha}|^2$. The $\frac{1}{2}$ is merely a convenient normalisation constant.

A simpler related problem, without the constraint |w| = 1, is obtained as follows. Let $\psi: S^n \to I\!\!R^n$ be stereographic projection from the north pole. If $w[\Omega]$ avoids a neighbourhood of the south pole then $u = \psi \circ w$ solves the problem:

Minimise

$$E(u) = \frac{1}{2} \int_{\Omega} a(u) |Du|^2,$$

amongst all maps $u: \Omega \to I\!\!R^n$ such that

 $u|_{\partial\Omega}$ specified.

Here a(u) is a smooth *positive* function (which is determined⁵ by ψ).

We will consider this simpler problem

Euler Lagrange System We now derive the Euler Lagrange system for minimisers of E. Arguing formally, if u is a minimiser of E (subject to fixing the boundary values of u), then for all $\phi \in C_c^1(\Omega; \mathbb{R}^n)^{-6}$

$$0 = \frac{d}{dt} \bigg|_{t=0} \frac{1}{2} \int_{\Omega} a(u+t\phi) |D(u+t\phi)|^2$$
$$= \int_{\Omega} a(u) D_i u^{\alpha} D_i \phi^{\alpha} + \frac{1}{2} D_{\alpha} a(u) \phi^{\alpha} |Du|^2$$
$$= \int_{\Omega} a(u) Du D\phi + B(u) |Du|^2 \phi.$$

 $^{{}^{5}}a(u) = |\nabla \psi|^{-2}$, where $\nabla \psi$ is the tangential gradient, defined in a natural manner. ${}^{6}C_{c}^{1}(\Omega; \mathbb{R}^{n})$ consists of all compactly supported C^{1} functions $\phi: \Omega \to \mathbb{R}^{n}$.

We sum over repeated indices in the second line, and in the last line we repress the indices.

If u satisfies the above integral equation for all $\phi \in C_c^1(\Omega; \mathbb{R}^n)$, we say that u is a *weak solution* of the system

$$D_i(a(u)D_iu^{\alpha}) = \frac{1}{2}D_{\alpha}a(u)|Du|^2$$
(2)

for $\alpha = 1, \ldots, n$.⁷ We abbreviate this to

$$D(a(u)Du) = B(u)|Du|^2.$$
 (3)

If u is C^1 then being weak solution is the same as satisfying (3) in the usual sense.

Important features to note are the positivity of a(u), which makes the system *elliptic*,⁸ and the quadratic nature of $|Du|^2$ on the right.⁹

Solutions with Singularities In the theory of elliptic P.D.E's, you considered the class of $W^{1,2}(\Omega)$ functions largely for technical reasons.¹⁰ It was "simple" to show the existence of weak solutions in this class, and then one considered the question of regularity of solutions. In the vector-valued setting, solutions need not be smooth, and it becomes even more natural to work in the $W^{1,2}$ setting.

Thus we define

 $W^{1,2}(\Omega; I\!\!R^N)$

to be the class of functions $u: \Omega \to \mathbb{R}^N$ such that each component function belongs to $W^{1,2}(\Omega)$.

Note that the energy E(u) is well defined for arbitrary functions $u \in W^{1,2}(\Omega; \mathbb{R}^n)$. In particular, the function x/|x| has partial derivatives which "behave like" 1/|x|, and so $x/|x| \in W^{1,2}(B_1(0); \mathbb{R}^n)$ if $n \ge 3$. But note that x/|x| has a singularity at the origin.

Let $\Omega = B_1(0)$. The function

$$w(x) = (x/|x|, 0)$$

maps $B_1(0)$ "radially" onto the equator of $S^n \subset \mathbb{R}^{n+1}$. The function x/|x|, and hence w, is a $W^{1,2}$ function if $n \geq 3$. One can show that if $n \geq 7$ then w

⁷The fact that the number of "dependent" variables u_1, \ldots, u_n and the number of "independent" variables x_1, \ldots, x_n are the same is just a consequence of this particular problem. It is not the case in general.

⁸More generally, if instead of $a(u)D_iu^{\alpha}D_i\phi^{\alpha}$ we had $\sum_{\substack{i=1,...,n\\\alpha=1,...,N}} A_{ij}^{\alpha\beta}D_iu^{\alpha}D_j\phi^{\beta}$, then we say the system is *elliptic* if $A_{ij}^{\alpha\beta}\xi_i^{\alpha}\xi_j^{\beta} \geq \lambda |\xi|^2$ for some constant $\lambda > 0$ and all $\xi \in \mathbb{R}^{n+N}$. In many physical problems it is important to have a weaker form of ellipticity, namely $A_{ij}^{\alpha\beta}\xi_i\eta^{\alpha}\xi_j\eta^{\beta} \geq \lambda |\xi|^2$ for some constant $\lambda > 0$ and all $\xi \in \mathbb{R}^{n}$. ⁹An exponent less than two is "easier" to handle; an exponent greater than two is more

⁹An exponent less than two is "easier" to handle; an exponent greater than two is more difficult. But two is the "natural" exponent for many problems, as is the case here.

¹⁰See also my lectures on measure theory.

has least energy amongst all functions mapping $B_1(0)$ onto the unit sphere and having the same boundary values as w. Similarly, if $n \ge 7$, $u = \psi \circ w$ minimises E(u) in (2) amongst all maps having the same boundary values. In particular, u satisfies the system of equations (2), i.e. (3). If $3 \le n < 7$ then u is no longer a minimiser, but it still satisfies the system (3). If n = 2it turns out that solutions of (3), and in particular minimisers of E(u), are smooth.

We have just noted that a solution of (3) may have a singularity. If u(x) is a solution, then clearly so is u(x-a) for any $a \in \mathbb{R}^n$. Since a sum of solutions is also solution, we obtain solutions with any finite number of singularities.

In general, a solution of (3) is said to be *stationary*, or an *equilibrium solu*tion, for the energy E. Thus minimisers are solutions of the Euler Lagrange system, but not necessarily conversely.¹¹ Since the energy is the Dirichlet Energy (for w, and also for u if we choose the appropriate metric), stationary functions for this particular problem are called *harmonic*.

3 A Simpler Model Problem

Our intention is to provide a reasonably complete analysis for solutions of systems of the form (3), but with *zero* right side. Thus we consider systems of the form

$$D(a(u)Du) = 0, (4)$$

which may or may not be an Euler Lagrange system.

Systems of the type (4) were the first type of *nonlinear* elliptic system to be analysed. (In the next Section we briefly remark on *linear* elliptic systems.) If the right side is *nonzero*, as in (3), then the problem is considerably more complicated. In particular, minimisers will have "nicer" properties than merely stationary solutions. See [G] for more details.

We remark (4) may also have singular solutions. For example, x/|x| is a weak solution of (4) if

$$A_{ij}^{\alpha\beta}(u) = \delta_{ij}\delta_{\alpha\beta} + \left(\delta_{\beta j} + \frac{4}{n-2}\frac{u^j u^\beta}{1+|u|^2}\right)\left(\delta_{\alpha i} + \frac{4}{n-2}\frac{u^i u^\alpha}{1+|u|^2}\right),$$

where $n = N \ge 3$. See [G, p. 57]. Note that the A are C^{∞} , in fact analytic. The system of equations in this case *is* an Euler Lagrange system for a certain energy functional. Moreover, for sufficiently large n, x/|x| is the (unique) minimiser of this particular energy functional.

 $^{^{11}{\}rm The}$ analogy is that a function E defined on $I\!\!R^k$ can have equilibrium points which are not minimisers.

4 Linear Elliptic Systems

For completeness, we briefly discuss linear elliptic systems. Suppose $\Omega \subset I\!\!R^n$ and

$$u: \Omega \to I\!\!R^N.$$

We say u satisfies a *linear elliptic system* in *integral form* if

$$\int_{\Omega} \sum_{\substack{i=1,\dots,n\\\alpha=1,\dots,N}} A_{ij}^{\alpha\beta}(x) D_i u^{\alpha} D_j \phi^{\beta} = 0$$
(5)

for all $\phi \in C_c^1(\Omega; \mathbb{R}^N)$. The $A_{ij}^{\alpha\beta}(x)$ are required to satisfy the *ellipticity* condition

$$A_{ij}^{\alpha\beta}(x)\xi_i^\alpha\xi_j^\beta \ge \lambda|\xi|^2$$

for some constant $\lambda > 0$ and all $\xi \in \mathbb{R}^{nN}$. Note that the coefficients $A_{ij}^{\alpha\beta}(x)$ depend only on x and not on u. The summation sign is usually dropped, and we even suppress all indices and write

$$\int_{\Omega} A(x) D u D \phi = 0.$$
(6)

The ellipticity condition is then written

$$A\xi\xi \ge \lambda |\xi|^2.$$

Assuming the $A_{ij}^{\alpha\beta}(x)$ are bounded, it is straightforward to show by an approximation argument that we may take $\phi \in W_0^{1,2}(\Omega; \mathbb{R}^N)$ in (5). Recall that $W_0^{1,2}(\Omega; \mathbb{R}^N)$ consists of those $W^{1,2}(\Omega; \mathbb{R}^N)$ functions which are zero on $\partial\Omega$ in a natural way.

Motivated by integration by parts, we usually write the system as

$$D_j \left(A_{ij}^{\alpha\beta}(x) D_i u^{\alpha} \right) = 0 \tag{7}$$

for $\beta = 1, \ldots, N$. This abbreviates to

$$D(A(x)Du) = 0.$$
(8)

If $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ satisfies (5) (i.e. (6)) we say u is a *weak solution* of the system (7) (i.e. (8)). If A(x) and u are C^1 , then it follows from integration by parts that a weak solution is a solution in the classical pointwise sense.

The theory of linear elliptic systems is similar to the theory of linear equations. In particular, one obtains an analogous Schauder theory (for $C^{k,\alpha}$ solutions) and Sobolev theory (for $W^{k,2}$ solutions).¹² The main difference is that if the functions $A_{ij}^{\alpha\beta}(x)$ are merely bounded, then there exist solutions with singularities. This is *not* the case for a single equation. See [G, p. 54]

 $^{^{12}}$ Although the details can be considerably more complicated, at least when one considers other than *second-order* elliptic systems.

5 Regularity Results, Summary

We now consider the question of *partial regularity* (i.e. smoothness) of solutions of (4).

More precisely, suppose $u \in W^{1,2}(\Omega; \mathbb{R}^N)$ and

$$D(A(u)Du) = 0, (9)$$

where

- 1. $|A(z)| \leq M \dots \forall z \in \mathbb{R}^N$,
- 2. $A\xi\xi \ge \lambda |\xi|^2 \dots \forall \xi \in I\!\!R^{nN}$, where $\lambda > 0$,
- 3. $A \in C^0(\mathbb{R}^N)$ is uniformly continuous.

More precisely, we are using an abbreviated notation as in the previous section. By u satisfying the system (9) we mean that the corresponding integral equations (as in (5) or (6) but with $A_{ij}^{\alpha\beta}(u)$ instead of $A_{ij}^{\alpha\beta}(x)$), are satisfied for all test functions $\phi \in W_0^{1,2}(\Omega; \mathbb{R}^N)$

We will see that $u \in C_0^{\alpha}(\Omega_0)$ for some open $\Omega_0 \subset \Omega$, where $\Omega \setminus \Omega_0$ is a set of dimension $\leq n-2$ (in a sense to be explained later). If A is smoother than C^0 , then u is correspondingly smoother in Ω_0 . In particular, if A is C^{∞} then $u \in C_0^{\infty}(\Omega_0)$.

More can be proved. It is only necessary that A be continuous, not uniformly continuous. Moreover, $\Omega \setminus \Omega_0$ is in fact a set of dimension p for some p < n-2, and is empty if n = 2.

The idea of the proof is that if the graph of a solution u is sufficiently "flat" in the L^2 sense near $x_0 \in \Omega$, then in fact u is smooth in a neighbourhood of x_0 . We will see that the "flatness" condition holds at all except a "small" set of points.

The key technical point in the proof is to consider the quantity

$$U(x_0, R) = \int_{B_R(x_0)} |u - (u)_{x_0, R}|^2,$$

for $B_R(x_0) \subset \Omega$. This measures the L^2 mean oscillation of u in $B_R(x_0)$. Here f denotes the average, and is obtained by dividing by the volume $\omega_n R^n$ of $B_R(x_0)$. The quantity $(u)_{x_0,R}$ is the average of u in $B_R(x_0)$ and is given by

$$(u)_{x_0,R} = \int_{B_R(x_0)} u.$$

We will see that if $U(x_0, R)$ is sufficiently small then in fact $U(x_0, r)$ approaches zero like a power of r. From this, one deduces the Hölder continuity of u in a neighbourhood of x_0 . One also shows that except for a set of x_0 of dimension n-2, $U(x_0, R)$ is indeed small for some $R = R(x_0)$.

6 Some Important Preliminaries

We discuss a number of fundamental results that are used in the proof of partial regularity.

6.1 Integral Characterisation of Hölder Continuity

Theorem If Ω has Lipschitz boundary, then

$$u \in C^{0,\alpha}(\overline{\Omega})^{13} \iff \int_{B_R(x_0)} |u - (u)_{x_0,R}|^2 \le cR^{n+2\alpha}$$

for all $B_R(x_0) \subset \Omega$, and some constant c.

Remark More precisely, if the integral condition holds, then the *precise* representative u^* of u, defined by

$$u^*(x_0) = \lim_{R \to 0} \oint_{B_R(x_0)} u,$$

satisfies $u^* \in C^{0,\alpha}(\overline{\Omega})$. Since $u^* = u$ a.e., and changing u on a set of measure zero does not change the integral, this is the best one can expect.

PROOF: If u is Hölder continuous, the integral inequality is straightforward. For the other direction, one works from the definition of u^* , see [G; Ch. III,1].

6.2 Energy (or Caccioppoli) Inequality

Theorem If u is a solution of (9) and $B_R(x_0) \subset \Omega$, then

$$\int_{B_{R/2}(x_0)} |Du|^2 \le \frac{c}{R^2} \int_{B_R(x_0)} |u|^2$$

Philosophy The important point here is that we are bounding the L^2 norm of the *derivative* of u in some ball in terms of the L^2 norm of u in a larger ball. Such an estimate is not true for arbitrary functions u, but it *is* typical of solutions of elliptic equations or systems that we can often bound integrals of higher derivatives in terms of integrals of lower derivatives, usually over a slightly larger set.

¹³Suppose $0 < \alpha \leq 1$. Then

 $u \in C^{0,\alpha}(\overline{\Omega}) \iff |u(x) - u(y)| \le M|x - y|^{\alpha}$

for some M > 0 and all $x, y \in \Omega$. Note that if $\alpha > 1$ then the derivative of u would be everywhere zero, and so u is constant!

Conversely, bounding integrals of lower derivatives in terms of integrals of higher derivatives is something we can do for *arbitrary* functions, by means of Sobolev or Poincaré inequalities. In particular, note the *Poincaré inequality*

$$\int_{B_R(x_0)} |u - (u)_{x_0,R}|^2 \le cR^2 \int_{B_R(x_0)} |Du|^2.$$

PROOF: Since the proof is one of the simplest examples of a test function argument, we sketch it here.

As is usual in P.D.E.'s, in the following, c denotes a constant which may change from line to line. But it will only depend on the dimension and constants such as M and λ which appear at the beginning of Section 5.

Let $\phi = \eta^2 u$, where η is smooth, $\eta \ge 0$, $\eta = 1$ on $B_{R/2}(x_0)$, $\eta = 0$ outside $B_R(x_0)$, and $|D\eta| \le 3/R$. Substituting this in the integral form of (9),

$$0 = \int A Du D\phi$$

= $\int A Du (\eta^2 Du + 2\eta u D\eta)$

Hence

$$\int \eta^2 A \, Du \, Du = -\int 2A \, \eta \, D\eta \, u \, Du$$

Hence

$$\begin{split} \lambda \int \eta^2 |Du|^2 &\leq c \int \eta |D\eta| \, |u| \, |Du| \\ &\leq \epsilon \int \eta^2 |Du|^2 + c(\epsilon) \int |D\eta|^2 |u|^2, \end{split}$$

by Young's inequality¹⁴. Taking $\epsilon = \lambda/2$,

$$\int_{B_{R/2}(x_0)} |Du|^2 \le \frac{c}{R^2} \int_{B_R(x_0)} |u|^2,$$

as required.

6.3 A Decay estimate for Solutions of Constant Coefficient Systems

Theorem Suppose u satisfies (9) where the A are constant and $\Omega = B_1(0)$ for simplicity of notation. Then for $0 < r \leq 1$,

$$U(0,r) \le cr^2 U(0,1)$$

for some constant c.

¹⁴See the last Section of my measure theory notes.

PROOF: We may assume $r \leq 1/4$, since if r > 1/4 we can take $c \geq 4^{n+2}$.

Then

$$\begin{aligned} r^{-2}U(0,r) &= \omega_n^{-1}r^{-2-n}\int_{B_r(0)}|u-(u)_r|^2 \\ &\leq cr^{-n}\int_{B_r(0)}|Du|^2 \quad \text{Poincaré's inequality} \\ &\leq c\sup_{B_r(0)}|Du|^2 \\ &\leq c\int_{B_{1/2}(0)}|Du|^2 \quad \text{a standard elliptic estimate} \\ &\leq c\int_{B_1(0)}|u-(u)_1|^2 \quad \text{by Caccioppoli's inequality} \end{aligned}$$

The "standard elliptic estimate" above is that one can typically bound higher norms (here L^{∞}) of solutions and their derivatives in terms of lower norms (here L^2) over a larger domain. "Caccioppoli's inequality" is applied to the solution $u - (u)_1$.

This gives the result.

7 Outline of Proof of Partial Regularity

Lemma Suppose u is a solution of (9). Then there exist constants $\epsilon > 0$ and $\tau \in (0, 1)$ such that

$$U(x_0, r) < \epsilon$$

implies

$$U(x_0, \tau r) < \frac{1}{2}U(x_0, r).$$

PROOF: Suppose $\tau \in (0, 1)$ and the conclusion of the lemma is false for each $\epsilon > 0$ (the intention is to obtain a contradiction if τ is sufficiently small).

Then there exist balls $B_{r_k}(x_k) \subset \Omega$ such that

$$U(x_k, r_k) = \lambda_k^2 \to 0 \tag{10}$$

but

$$U(x_k, \tau r_k) \ge \frac{1}{2} \lambda_k^2.$$
(11)

Rescale to the unit ball by setting

$$v_k(z) = \frac{u(x_k + r_k z) - a_k}{\lambda_k}$$

for $z \in B_1(0)$, where $a_k = (u)_{x_k, r_k}$.

Then, using the integral form of (9),

$$\int A(\lambda_k v_k + a_k) Dv_k \, D\phi = 0$$

for all $\phi \in W_0^{1,2}(B_1(0); \mathbb{R}^N)$.

Moreover, from (10) and (11),

$$(v_k)_1 = 0$$

 $\int_{B_1} |v_k|^2 = 1$
 $\int_{B_\tau} |v_k - (v_k)_\tau|^2 \ge 1/2.$

From Caccioppoli's inequality, $\int_{B_1} |Dv_k|^2$ is bounded independently of k. This allows one to pass to a subsequence of the v_k which converges weakly in $W^{1,2}$, strongly in L^2 and pointwise a.e., to some function v. Moreover, $a_k \to a$, say. From this it is not difficult to show that v will satisfy the "limit" equation

$$\int A(a) \, Dv \, D\phi = 0$$

for all $\phi \in W_0^{1,2}(B_1(0); I\!\!R^N)$.

From the decay estimate for constant coefficient equations,

$$\int_{B_{\tau}} |v - (v)_{\tau}|^2 < c\tau^2 \int_{B_1} |v - (v)_1|^2 = c\tau^2.$$

On the other hand,

$$\int_{B_{\tau}} |v - (v)_{\tau}|^2 \ge \frac{1}{2},$$

using continuity of the L^2 norm under L^2 convergence in both lines.

This is a contradiction for sufficiently small τ .

The Lemma is now used as follows. The inequality $U(x_0, r) < \epsilon$ must hold in an open subset of Ω . Moreover, it can be iterated to show

$$U(x_0,\tau^j r) < \left(\frac{1}{2}\right)^j U(x_0,r).$$

This, together with the integral characterisation of Hölder continuity and elementary arguments, shows $u \in C^{0,\alpha}(\Omega_0)$ for some α . Higher smoothness follows by fairly standard iteration techniques (although $C^{0,\alpha}$ to $C^{1,\alpha}$ is not quite so standard).

The estimate on the dimension of $\Omega \setminus \Omega_0$ follows from noting

$$U(x_0, r) \le cr^{2-n} \int_{B_r(x_0)} |Du|^2$$

by Poincaré's inequality, and the fact (using a Vitali covering argument) that the right side approaches zero except on a set E with $\mathcal{H}^{n-2}(E) = 0$.